Существует три вида материалов: проводники, диэлектрики и полупроводники. Все вещества состоят из атомов. В свою очередь, атом состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов. Электроны вращаются вокруг ядра по орбитам и сгруппированы в слои. Каждому слою соответствует энергетический уровень.
Если представить изолированный атом, то каждый электрон занимает определенный энергетический уровень. Все атомы одного элемента находятся на большом расстоянии друг от друга и имеют одинаково доступные энергетические уровни. Более подробно о структуре строения атома, образования P-N перехода и работе полупроводниковых приборов можно изучить на курсе электроники.
Модель идеального атома
При соединении нескольких атомом вместе образуется твердое тело, и дальние электроны испытывают воздействие не только своего ядра, но и соседнего, а также всех остальных ядер, находящихся рядом. То есть их энергетические уровни смещаются, а чтобы быть одинаковыми, начинают превращаться в ряды близко расположенных, но отдельных энергетических уровней. Таким образом образуются энергетические уровни.
Взаимодействие атомов в твердом теле
Самые отдаленные энергетические уровни от атомов – называются валентными, в них находятся свободные электроны. А уровень более близкий к атому – проводимости. В проводниках валентная зона заполнена частично. Поэтому при небольшом количестве тепловой энергии электроны могут переходить на свободные места.
А при наличии электрического поля переходить с одного энергетического уровня на другой и проводить ток через материал. У проводников валентная зона и зона проводимости перекрывают друг друга, и валентные электроны легко переходят на уровень проводимости.
В диэлектриках валентная зона полностью заполнена. Поэтому при приложении электрического поля электроны не могут перемещаться. Между валентной зоной и зоной проводимости возникает запрещенная зона за счет разницы между энергиями зон валентной и проводимости. У них ширина запрещенной зоны составляет более 6 эВ. Из-за наличия запрещенной зоны электроны не могут перейти на уровень проводимости.
В полупроводниках имеется запрещенная зона, но она сравнительно мала и составляет от 0,5 до 3,0 эВ. Поэтому при обычной температуре у электронов достаточно энергии чтобы перейти на уровень проводимости. Они могут занимать свободные места, которые могут перемещаться и проводить электрический ток.
Энергетические уровни
Чистые полупроводники не используются для создания электронных приборов за счет строения кристаллической решетки. Для достижения функциональности добавляют в их кристаллическую решетку атомы примеси, на котором в дальнейшем будет формироваться P-N переход.
Кристаллическая решетка кремния
Основным полупроводником в электронике является 4-х валентный кремний (Si), имеющий в своей структуре четыре валентных электрона. Кремний используется для создания P-N перехода в современных полупроводниковых приборах.
В кремний добавляют мышьяк (As) в небольшом количестве, имеющий похожую кристаллическую решетку. Такой процесс называется – легированием. Он легко вписывается в структуру кремния, при этом принося один дополнительный электрон на донорский уровень под зоной проводимости.
Структура кремния с донорной примесью
При небольшом количестве тепловой энергии он может переходить в зону проводимости и проводить электрический ток. Данный проводник называется N-типом и он нейтрален. Большинство носителей заряда здесь электроны.
Существует другой тип полупроводников, называемый P-типа. В нем носители заряда положительные “дырки”. Для получения данного типа проводимости в кремний добавляют небольшое количество атомов индия (In). Индий хорошо вписывается в решетку кремния, при этом имеет на один валентный электрон меньше. Поэтому создает пустой акцепторный уровень расположенный выше валентной зоны.
Структура кремния с акцепторной примесью
При небольшом количестве тепловой энергии электроны покидают валентную зону оставляя после себя дырки. Они отвечают за проведение тока в полупроводниках P-типа. Сам материал не имеет заряда.
Если соединить P и N проводники между собой возникает процесс диффузии (проникновение одного вещества в другое). На границе соединения – проводник P-типа становится частично отрицательно заряженным, а проводник N-типа частично положительно заряженным.
В результате чего внутри нейтрального материала возникает электрическое поле. Электроны продолжают диффундировать до тех пор, пока электрическое поле не станет настолько большим, что не позволит им пересекать его. В результате этого создается слой обеднения подвижными носителями заряда (нет электронов в зоне проводимости и дырок в валентной зоне).
Дырки подошедшие к границе P-N перехода со стороны p-области отталкиваются назад положительным зарядом, а электроны из n-области отталкиваются отрицательным зарядом.
Таким образов образуется P-N переход, имеющий слой полупроводника с пониженным содержанием носителей и обедненный слой с высоким электрическим сопротивлением. P-N переход обладает барьерной и диффузионной емкостью.
Если к структуре P-N перехода приложить внешнее напряжение к p-области плюс, а к n-области минус, то дырки отталкиваясь от положительного потенциала внешнего источника, приближаются к границе P-N перехода, сужая его ширину со стороны p-области. Аналогично происходит в n-области.
Потенциальный барьер сужается и через P-N переход начинает протекать электрический ток. С увеличением напряжения величина тока возрастает в P-N переходе, так как он создается основными носителями, а концентрация носителей пополняется внешним источником напряжения. В этом случае P-N переход открывается.
Прямое смещение P-N перехода
При приложении к структуре P-N перехода обратной полярности – к p-области минус, а к n-области плюс; под действием внешнего электрического поля, дырки p-области смещаются к отрицательному потенциалу, а электроны к положительному. Ширина P-N перехода увеличивается, а свободные носители заряда в ней отсутствуют. P-N переход закрывается.
Обратное смещение P-N перехода